
What is Formalization of Mathematics?

2025 Lean summer school @ Utrecht Johan Commelin



Welcome to Utrecht!

Wifi instructions: sms “uu63” to +31 6 3574 4774



Demo 1

Please visit: https://live.lean-lang.org/

https://live.lean-lang.org/


Overview / motivation



Formalize (verb)

1. to give a certain or definite form to

2. (a) to make formal
(b) to give formal status or approval to

Source: Merriam–Webster



What is “formalization of mathematics”?

Encoding mathematics in a formal language

so that it can be mechanically verified and manipulated

This can be done theoretically: proof theory is a subfield of maths

But also practically: using interactive theorem provers

This week we will focus on the practical side, using Lean



What is “formalization of mathematics”?

Encoding mathematics in a formal language

so that it can be mechanically verified and manipulated

This can be done theoretically: proof theory is a subfield of maths

But also practically: using interactive theorem provers

This week we will focus on the practical side, using Lean



What is “formalization of mathematics”?

Encoding mathematics in a formal language

so that it can be mechanically verified and manipulated

This can be done theoretically: proof theory is a subfield of maths

But also practically: using interactive theorem provers

This week we will focus on the practical side, using Lean



Practical benefits (mathematics)

Formalized mathematics is good for

▶ Verification

▶ Automation

▶ Education

▶ Search

▶ Preservation

▶ Collaboration

▶ Fun, joy, pleasure



Practical benefits (mathematics)

Formalized mathematics is good for

▶ Verification

▶ Automation

▶ Education

▶ Search

▶ Preservation

▶ Collaboration

▶ Fun, joy, pleasure



Practical benefits (computer science)

Formalization is good for

▶ Verified software (compilers, cryptography, kernels)

▶ Verified hardware (chip design, Intel bug)

▶ Antidote to hallucinating AI



Interactive theorem provers

Many ITPs exist: Automath, Mizar, Rocq, Isabelle, HOL, Agda, Lean

Active research topic since the 1960’s, mostly in CS.

Since 2017, rapid growth in the maths community.



Case studies in formalized maths



Automath

▶ 1967: De Bruijn creates Automath

▶ 1976: Van Benthem Jutting translates
Landau’s Foundations of Analysis in Automath

▶ Long-lasting conceptual influence



Four colour theorem

▶ 1852: Guthrie conjectures

▶ 1976: Appel–Haken
proof using extensive computer calculation

▶ 1996: Robertson–Sanders–Seymour–Thomas
shorter proof, less cases, faster algorithm

▶ 2005: Gonthier–Werner formalize a proof in Rocq



Flyspeck

▶ 1611: Kepler conjectures

▶ 19xx: Several proof attempts/claims

▶ 1998: Hales–Ferguson announce a proof

▶ 2003: Annals is 99% certain

▶ 2003: Hales launches Flyspeck

▶ Joint work with 21 collaborators

▶ 2015: Formal proof is completed
using Isabelle and HOL Light



Liquid Tensor Experiment

Theorem (Clausen–Scholze).
Let 0 < p ′ < p < 1 be real numbers.
Let S be a profinite set, and let V be a p-Banach space.

Let Mp ′(S) be the space of p ′-measures on S.

Then
Exti

Cond(Ab)(Mp ′(S), V) = 0

for i ⩾ 1.



Liquid Tensor Experiment

I spent much of 2019 obsessed with the proof of this theorem, almost getting
crazy over it. In the end, we were able to get an argument pinned down on
paper, but I think nobody else has dared to look at the details of this, and so
I still have some small lingering doubts. — Peter Scholze



Liquid Tensor Experiment

▶ 2020: Scholze posts formalization challenge

▶ 2021: Key ingredient formalized after 6 months

▶ Joint work of a dozen people
(led by JMC and Adam Topaz)

▶ 2022: Full challenge completed in Lean



Liquid Tensor Experiment

[. . .] one key problem I had when I was trying to find this proof was that I
was essentially unable to keep all the objects in my ‘RAM’, and I think the
same problem occurs when trying to read the proof

— Peter Scholze

Formalism helps manage cognitive load.



Equational theories

▶ 2024: Terence Tao starts project, many contributors

▶ If a binary operation satisfies

∀x, y, z : x · y · x · z = z · y

does it also satisfy commutativity?

▶ There are ≈ 4000 small “laws”:
what about all ≈ 40002 implications?



Equational theories

▶ 2024: Terence Tao starts project, many contributors

▶ If a binary operation satisfies

∀x, y, z : x · y · x · z = z · y

does it also satisfy commutativity?

▶ There are ≈ 4000 small “laws”:
what about all ≈ 40002 implications?



Equational theories

▶ Computers settled > 99.99% of cases,
human ingenuity settled the rest.

▶ Formalized in Lean.

▶ Modern AI only played a very small role.

▶ A handful of these axioms are “Martian”
and deserve more study.



Equational theories

▶ Computers settled > 99.99% of cases,
human ingenuity settled the rest.

▶ Formalized in Lean.

▶ Modern AI only played a very small role.

▶ A handful of these axioms are “Martian”
and deserve more study.



DeepMind: AlphaProof

▶ 2024: AlphaProof solves 4 out of 6 IMO problems

▶ Equivalent of a silver medal

▶ We do not know many details about the implementation
▶ Lean to verify formal correctness
▶ Large language models to translate to Lean
▶ Reinforcement learning to learn proving

▶ The generated proofs are weird!



DeepMind: AlphaProof

▶ 2024: AlphaProof solves 4 out of 6 IMO problems

▶ Equivalent of a silver medal
▶ We do not know many details about the implementation

▶ Lean to verify formal correctness
▶ Large language models to translate to Lean
▶ Reinforcement learning to learn proving

▶ The generated proofs are weird!



AI @ IMO 2025

▶ IMO 2025 happened last week @ Australia

▶ Organization asked to first celebrate human IMO



What is Lean?



History of Lean

▶ 2013: Leonardo de Moura launches Lean at Microsoft Research

▶ 2015: Lean 2 is released (HoTT mode)

▶ 2017: Lean 3 (start of Mathlib)

▶ 2021: Lean 4



Lean 4

▶ Full-fledged functional programming language

▶ Almost self-hosted: Lean 4 is written in Lean 4

▶ Dependent type theory

▶ Extensible syntax

▶ Extensible tactics (automation)



Mathlib

▶ ≈ 1.9 million lines of code

▶ ≈ 300 000 results

▶ ≈ 500 contributors

▶ covering the foundations of linear algebra, topology, analysis, algebra,
number theory, geometry, category theory, ...



Tactics

A tactic is a program (often written in Lean)

that can create a partial proof.

Many proof techniques have a corresponding tactic:

▶ induction

▶ by_cases

▶ contrapose



Proof terms

Under the hood, tactics build proof terms.

The kernel verifies proof terms for correctness.

You will sometimes write proof terms by hand.

For example using the exact tactic:

exact [proof term goes here]



Proof terms

Under the hood, tactics build proof terms.

The kernel verifies proof terms for correctness.

You will sometimes write proof terms by hand.

For example using the exact tactic:

exact [proof term goes here]



Declarations (def/theorem/lemma)

The rough anatomy of a declaration in Lean:

decl_cmd someName (an : assumption) (one : more assumption) :
some Lean statement := some proof/value

▶ decl_cmd is def or theorem or lemma

▶ someName is the name of your def/theorem (like a LATEX label)

▶ followed by a list of assumptions

▶ : signals that the statement/conclusion follows

▶ := signals that the proof/value follows



Superfast theory crash course



Foundations

Formalizing mathematics requires a logical foundation.

In the past century, ZFC has dominated mathematics.

Type theory is an alternative foundation.

It has the same logical strength, but some practical advantages.



Naive type theory

Type X— Set X

Term x : X— Element x ∈ X

Function X → Y— Function X → Y

Product X × Y— Product X × Y

Sum X ⊕ Y— Disjoint union X ⊔ Y



Curry–Howard correspondence

Type P— Proposition P

Term p : P— Proof p of P

Function P → Q— Implication P ⇒ Q

Product P × Q— Conjunction P ∧ Q

Sum P ⊕ Q— Disjunction P ∨ Q



Typing judgement

▶ In set theory you can prove x ∈ X

▶ In type theory you cannot prove x : X

▶ The type checker can verify x : X

▶ By the Curry–Howard correspondence,
proof checking is a special case of type checking



Typing judgement

▶ In set theory you can prove x ∈ X

▶ In type theory you cannot prove x : X

▶ The type checker can verify x : X

▶ By the Curry–Howard correspondence,
proof checking is a special case of type checking



No better time to act then now

The only way to learn mathematics
is to do mathematics — Paul Halmos



Demo 2

Please visit: https://live.lean-lang.org/

https://live.lean-lang.org/

